Wavelets in state space models
نویسندگان
چکیده
منابع مشابه
State Space Markov Switching Models Using Wavelets
We propose a state space model with Markov switching, whose regimes are associated with the model parameters and regime transition probabilities are time-dependent. The estimation is based on maximum likelihood method using the EM algorithm. The distribution of the estimators is assessed using bootstrap. To evaluate the state variables and regime probabilities, the Kalman filter and a probabili...
متن کاملResampling in State Space Models∗
Resampling the innovations sequence of state space models has proved to be a useful tool in many respects. For example, while under general conditions, the Gaussian MLEs of the parameters of a state space model are asymptotically normal, several researchers have found that samples must be fairly large before asymptotic results are applicable. Moreover, problems occur if the any of parameters ar...
متن کاملSwitching State-Space Models
We introduce a statistical model for times series data with nonlinear dynamics which iteratively segments the data into regimes with approximately linear dynamics and learns the parameters of each of those regimes. This model combines and generalizes two of the most widely used stochastic time series models|the hidden Markov model and the linear dynamical system|and is related to models that ar...
متن کاملDiscriminative State Space Models
We introduce and analyze Discriminative State-Space Models for forecasting nonstationary time series. We provide data-dependent generalization guarantees for learning these models based on the recently introduced notion of discrepancy. We provide an in-depth analysis of the complexity of such models. We also study the generalization guarantees for several structural risk minimization approaches...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Stochastic Models in Business and Industry
سال: 2003
ISSN: 1524-1904,1526-4025
DOI: 10.1002/asmb.496